A

भारत सरकार/Government of India अंतरिक्ष विभाग/Department of Space द्रव नोदन प्रणाली केंद्र/LIQUID PROPULSION SYSTEMS CENTRE वलियमला पी ओ, तिरुवनंतपुरम/Valiamala PO, Thiruvananthapuram - 695 547

> तकनीकी सहायक (यांत्रिक) के पद के चयन हेतु लिखित परीक्षा WRITTEN TEST FOR SELECTION TO THE POST OF TECHNICAL ASSISTANT (MECHANICAL)

TECHNICAL ASSISTANT (MECHANICAL)

दिनांक/Date: 23.02.2020

समय/Time: 2 घंटे/hours

5.5

अभ्यर्थी का नाम/Name of the Candidate:

उच्चतम अंक/Maximum Marks: 300

क्रमांक/Roll No.:

अभ्यर्थियों के लिए अनुदेश/Instructions to the Candidates

- उत्तर लिखने की शुरुआत से पहले अभ्यर्थियों को प्रश्न पुस्तिका एवं ओएमआर उत्तर शीट निर्देशों को ध्यान से पढ़ना चाहिए। / Candidates should read carefully the instructions in the Question booklet and OMR Answer Sheet before start answering.
- 2. ऑन-लाइन आवेदन में अभ्यर्थियों द्वारा दिए गए डाटा के आधार पर लिखित परीक्षा के लिए बुलाया गया है। यदि आपने आवेदन में गलत रूप में दिया है तो हमारे विज्ञापन के आधार पर अपेक्षित योग्यता नहीं है तो आपकी अभ्यर्थिता रद्द की जाएगी। / Candidates have been called for the written test based on the data furnished by them in the on-line application. If you have wrongly entered in the application or you do not possess the required qualification as per our advertisement, your candidature will be rejected.
- 3. परीक्षा हॉल में निरीक्षक की उपस्थिति में ही प्रवेश कार्ड/फोटोग्राफ में हस्ताक्षर करना चाहिए। / Candidates should sign the Admit Card/Photograph only in the presence of the invigilator in the Examination Hall.
- 4. प्रश्न पत्र 75 प्रश्नों से युक्त एक प्रश्न बुकलेट(पुस्तिका) रहेगी। प्रश्नों के उत्तर देने के लिए अलग से एक ओएमआर शीट दिया जाता है। / The question paper is in the form of Question Booklet with 75 questions. A separate OMR sheet is provided for answering the Questions.

तकनीकी सहायक (यांत्रिक) TECHNICAL ASSISTANT (MECHANICAL)

1. 200 m त्रिज्या के वृत्ताकारी पथ में 36 km/hr की स्थिर गित पर, एक कार चल रही है, तो m/s² में (at) स्पर्शरेखीय त्वरण और सामान्य त्वरण (an) ————— है।

A car travelling at a constant speed of 36 km/hr in a circular path of radius 200 m, then normal acceleration (an) and tangential acceleration (at) in m/s² is given by

(a)
$$an = 0$$
, $at = 0$

(b) an = 0, at =
$$0.5 \text{m/s}^2$$

(c) an =
$$0.5 \text{m/s}^2$$
, at = 0

(d) an = 0, at =
$$6.5 \text{m/s}^2$$

2. चित्र में दिये गए स्प्रिंग प्रणाली के लिए समतुल्य कड़ापन है

For the spring system given in figure, the equivalent stiffness is

(a) 0.4K

(b) 4K

(c) 2.5K

- (d) K
- 3. एक सहारे से नीचे की ओर, एक 30 cm लम्बी और नगण्य भार की इलास्टिक छड़ी टंगी है। एक मामले में, सहारे से 20 cm नीचे, छड़ी पर लोड डाला जाता है और दूसरे मामले में, छड़ के निचले छोर पर समान लोड डाला जाता है। सहारों पर प्रतिक्रियाएँ होंगी

An elastic rod, 30 cm long, of negligible weight hangs downwards from a support. In one case load is applied on rod 20 cm below the support and in the other case the same load is applied at bottom of rod. The reactions at supports will be

- (a) प्रथम मामले में अधिक / More in first case
- (b) दोनों मामलों में समान / Same in both the cases
- (c) द्वितीय मामले में अधिक / More in second case
- (d) उपरोक्त में से कोई नहीं / None of the above

4. एक ठोस शाफ्ट, 6kN-m के बंकन आधूर्ण और 8kN-m के बल आधूर्ण दोनों का एक साथ प्रतिरोध कर सकता है। अकेले लगाए जाने पर अधिकतम बल आधूर्ण जिसका प्रतिरोध शाफ्ट कर सकता है

A solid shaft can resist a bending moment of 6kN-m and a torque of 8kN-m applied together. The maximum torque that the shaft can resist when applied alone is

(a) 10 kN-m

(b) 14 kN-m

(c) 7 kN-m

- (d) 5 kN-m
- एक 1 किलो का ब्लॉक एक सतह पर रखा है जिसका घर्षण-गुणांक μ = 0.1 है। चित्र में दिखाये गए अनुरूप उस पर 0.8N का बल लगाया जाता है। न्यूटन में घर्षण बल है

A 1 kg block is resting on a surface with coefficient of friction, μ = 0.1. A force of 0.8N is applied to the block as shown in figure. The friction force in Newton is

(a) 0

(b) 0.98

(c) 1.2

- (d) 0.8
- 6. जब 2 m की ऊँचाई से, 0.5 kN/m के कडेपन वाले स्प्रिंग पर 500 N का भार गिरता है, तो प्रथम गिरावट में, आया अधिकतम विचलन क्या होगा?

When a weight of 500 N falls on a spring of stiffness 0.5kN/m from a height of 2 m. What is the maximum deflection caused in first fall?

(a) 2 m

(b) 4 m

(c) 1 m

(d) 0.63 m

7. $\int_{0}^{2} \int_{0}^{x} y \, dy \, dx$ का मान क्या है?

The value of $\int_{0}^{2} \int_{0}^{x} y \, dy \, dx$

(a) $\frac{2}{3}$

(b) 1

(c) $\frac{4}{3}$

A

(d) $\frac{3}{4}$

8. मैट्रिक्स का निर्धारक (डिटरिमनेन्ट) है $\begin{bmatrix} 4 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & -1 & 2 \\ 0 & 0 & 0 & 0 & -3 \end{bmatrix}$

The determinant of matrix $\begin{bmatrix} 4 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & -1 & 2 \\ 0 & 0 & 0 & 0 & -3 \end{bmatrix}$

(a) 8

(b) 24

(c) 0

- (d) 3
- 9. यदि $m \times n$ मैट्रिक्स A ऐसे हो कि AB और BA दोनों पारिभाषित है, तो B ऑर्डर का एक मैट्रिक्स है। If A is $m \times n$ matrix such that AB & BA both are defined, then B is a matrix of order
 - (a) $n \times n$

(b) $m \times m$

(c) $m \times n$

(d) $n \times m$

10. $\lim_{x \to 0} \frac{1 - \cos x}{x \sin x}$ का मान है

Value of $\lim_{x \to 0} \frac{1 - \cos x}{x \sin x}$

(a) 0

(b) ∞

(c) $\frac{1}{2}$

- (d) 1
- 11. यदि $5 \cot \theta = 12$ है, तो $\csc \theta + \sec \theta$ का मान के क़रीब होगा।

 If $5 \cot \theta = 12$, the value of $\csc \theta + \sec \theta$ is close to
 - (a) 3.68

(b) 2.48

(c) 6.28

(d) 5.38

12.
$$\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{\sin x} \right)$$
 का मान है

Value of $\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{\sin x} \right)$

(a) -1

(b) 1

(c) 0

(d) ∞

(a) $\frac{1}{2}$

(b) $\frac{\sqrt{3}}{2}$

(c) 1

(d) $\frac{1}{\sqrt{2}}$

14. यदि
$$Y = e^x \sin x$$
 है, तो निम्नलिखित में से कौन सा अवकल समीकरण सही है?
If $Y = e^x \sin x$, then which of the following differential equation holds true?

(a) $\frac{d^2y}{dx^2} + \frac{dy}{dx} + y = 0$

(b) $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y = 0$

(c) $\frac{d^2y}{dx^2} - \frac{dy}{dx} + y = 0$

(d) $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} - 2y = 0$

Open cycle gas turbine works on

- (a) एरिक्सन सायकल / Ericsson cycle
- (b) रैन्काइन सायकल / Rankine cycle
- (c) कार्नट सायकल / Carnot cycle
- (d) ब्रैटोन सायकल / Brayton cycle

16. एक वाष्प नॉज़ल में, अति तप्त वाष्प का प्रवेशी दाब 10 bar है। निकासी दाब को 3 bar से 1 bar तक कम किया जाता है। निकासी दर —————।

In steam nozzle, the inlet pressure of superheated steam is 10 bar. The exit pressure is decreased from 3 bar to 1 bar. The discharge rate will

- (a) स्थिर रहेगी / Remain constant
- (b) घटेगी / Decrease
- (c) थोडा बढेगी / Increase slightly
- . (d) बढ़ना या घटना, नॉज़ल के अभिसारी या अपसारी होने पर आधारित है / Increase or decrease depending on whether nozzle is convergent or divergent

17		बद (सवृत) प्रणाला के लिए, प्रणाली में डाली गई ऊष्मा और प्रणाली द्वारा किये गए काम के बीच का अन्तर ————— के बराबर है।							
	For	For a closed system, the difference between the heat added to the system and the work done by the system is equal to							
	(a)	पूर्ण ऊष्मा (एन्थाल्पी) /	Enthalpy	(b)	उत्क्रम-माप (एन्ट्रोपी) / Entropy				
	(c)	तापमान / Temperatu	ure	(d)	आंतरिक ऊर्जा / Internal Energy				
18.	एक	आवेग भाप टरबाइन में, स्थि	र दाब और निरपेक्ष वेग	ा के अंतर पर	वेचार करने पर एक कतार में चलती ब्लेडों	में			
	Cor	Considering the variation of static pressure and absolute velocity in an impulse steam turbine across one row of moving blades							
	(a)	(a) दान और वेग दोनों घटता है / Both pressure and velocity decreases							
	(b)								
	(c)								
	(d)	दाब स्थिर रहता है जबकि	वेग बढ़ता है / Pres	sure remai	ns constant while velocity increa	ses			
19.	को दू If a	री है।	eaches a window		हुँचती है, तो सीढ़ी के अधोभाग और दीवा e the ground, then the distance o 8 m 6 m				
20.	समाक	ल्लन (इंटेगल) r/cos² r	का मान	ने ना	ਜ਼ਾ ਹੈ।				
		समाकलन (इंटेग्रल) $x/\cos^2 x$ का मान — के बराबर है। The value of integral $x/\cos^2 x$ is equal to							
	(a)	x tan x		(b)	$x \tan x + \log \cos x$				
	(c)	$\log \cos x$		(d)	$x \tan x - \log \cos x$				
21.	The l	Bar 'A' के, यंग मॉडुलस और ऊष्मीय फैलाव गुणांक तथा लम्बाई, bar 'B' का दुगना है। Bar 'A' में उत्पन्न तनाव के मुकाबले bar 'B' में उत्पन्न तनाव का अनुपात क्या होगा, यदि दोनों bar का तापमान, समान मात्रा में बढ़ा दिया जाए (दोनों छोर नियंत्रित) The length, Young's modulus and coefficient of thermal expansion of bar 'A' are twice that of bar 'B'. What will be the ratio of stress developed in bar 'A' to that in 'B' if the temperature of both bar is increased by same amount (both ends are constrained).							
	(a)	2		(b)	8				
	(c)	4		(d)	16				

721 TA(ME)

			54 10 (4 1843 TO 1876)					
22.	ठोस वृत्ताकारी शाफ्ट की सतह पर उत्पन्न अधिकतम अपरूप प्रतिबल शुद्ध आघूर्णबल के अंतर्गत 400 MPa है। यदि शाफ्ट व्यास							
	को दुगुना कर दिया जाए, तो समान बलाघूर्ण के अनुरूप उत्पन्न अधिकतम अपरूप प्रतिबल होगा।							
	Maximum shear stress developed on the st	ırface	of solid circular shaft under pure torsion is ximum shear stress developed corresponding to					
	(a) 200 Mpa	(b)	1600 MPa					
	(c) 100 Mpa	(d)	50 MPa					
23.	एक 20 mm × 20 mm वर्ग अनुप्रस्थ-काट के स्टील दण्ड	इ पर 20	0 kN का अक्षीय सम्पीडन भार डाला जाता है। यदि दण्ड की					
	लम्बाई 1 m है और E =100 GPa है, तो दण्ड का दीर्घीकरण (इलोंगेशन) होगा							
	A steel bar of $20 \mathrm{mm} \times 20 \mathrm{mm}$ square cross-section is subjected to an axial compressive load of 200 kN. If the length of the bar is 1 m and E = 100 GPa, the elongation of the bar will be							
	(a) 0.2 mm	(b)	5 mm					
	(c) 2.5 mm	(d)	0.5 mm					
24.	एक 20 mm व्यास का ठोस वृत्ताकारी दण्ड, 1570 Nm का बलाघूर्ण संचारित करता है। अधिकतम उत्पन्न अपरूपण प्रतिबल का मान करीब है ———————————————————————————————————							
	(a) 1000 Mpa	(b)	20 MPa					
	(c) 50 GPa	(d)	20 GPa					
25.	आघात रोधी स्टील में ———होना चाहिए। Shock resisting steels should have		C					
		(b)	निम्न कडापन / low hardness					
	(a) निम्न घिसाई प्रतिरोध / low wear resistance (c) निम्न तनन शक्ति / low tensile strength	(d)	टफनेस / toughness					
26.	डाई बेधक विधि का उपयोग सामान्यतया —————	– का पर	ना लगाने में होता है।					
20.	Dye penetrant method is generally used to locate							
	(a) कोर त्रुटियाँ / core defects							
	(b) सतही त्रुटियाँ / surface defects							
	(c) सुपरिफसियल त्रुटियाँ / superficial defects							
	(d) अस्थाई त्रुटियाँ / temporary defects							
	(a) and area a semilerand							

27.	वर्क :	हार्डिनिंग की वजह से एक पदार्थ की तन्यता —						
	The	ductility of a material with work l						
	(a)	बढ़ती है / increases	(b)	अप्रभावित रहती है / remains unaffected				
	(c)	घटती है / decreases	(d)	कहा नहीं जा सकता / unpredictable				
28.	लोहा	-कार्बन की यूटेक्टिक प्रतिक्रिया ————	—— पर होती	है।				
	Eute	ectic reaction of Iron-Carbon occur	rs at					
	(a) (c)	527°C 1493°C	(b) (d)	723°C 1147°C				
29.	10 c	cm त्रिज्या के पाइप में से, पानी के पूर्ण विकसि	ात पटलीय बहाव ((डयनामिक विस्कोसिटी 0.001 Pa-s) के लिए, अक्षीय दबाव				
	ग्रेडिए	ग्रेडिएंट है –10 Pa/m अधिकतम वेग (m/s में) का परिमाण है						
	For 10 c	For a fully developed laminar flow of water (dynamic viscosity 0.001 Pa-s) through a pipe of radius 10 cm, the axial pressure gradient is -10 Pa/m. The magnitude of maximum velocity (in m/s) is						
	(a)	25	(b)	50				
	(c)	75	(d)	100				
30.	किसी	किसी तरल पदार्थ की श्यानता ———— के कारण होती है।						
	The	The viscosity in a fluid is caused mainly by						
	(a) संसक्ति का अन्तर आण्विक बल / intermolecular force of cohesion							
	(b) आण्विक संवेग का आदान-प्रदान / molecular momentum exchange							
	(c)	18 18 18 18 18 18 18 18 18 18 18 18 18 1						
	(d)	No. And Andrews and the second						
31.	गिरती	गिरती पानी की बूंदे, ———— गुण के कारण गोलाकार बनती हैं।						
		Falling drops of water becomes sphere due to the property of						
	(a)	सतही तनाव / surface tension	(b)	आसंजन / adhesion				
	(c)	संसंजन / cohesion	(d)	श्यानता / viscosity				
32.	गैर वृत्त	गैर वृत्ताकार डक्ट के लिए, व्यास के स्थान पर प्रयुक्त द्रवचालित व्यास ————— के बराबर है।						
	(A: ō	(A : बहाव का क्षेत्र, m : गीली परिधि)						
	Hydi (A:	Hydraulic diameter used in place of diameter for a non-circular duct is equal to (A: area of flow, m: wetted perimeter)						
	(a)	A/m	(b)	4 A/m				
	(c) -	A/4 m	(d)	4 m/A				

33.	पात्र मे	पात्र में पानी पर बहते बर्फ का खण्ड जब पिघलता है, तो पात्र में पानी का स्तर						
	When a block of ice floating on water in a container melts, the level of water in the container							
	(a)	बढ़ता है / rises						
	(b)	(b) गिरता है / falls						
	(c)	(c) पहले गिरता है फिर उठता है / first falls then rises						
	(d)	समान रहता है / remains same						
34.	स्टील	स्टील में वेनेडियम के मिलावट के परिणामस्वरूप ———— में सुधार होता है						
	Add	Addition of Vanadium to steel results in improvement of						
	(a)	(a) कठोरनीयता / Hardenability						
	(b)	(b) श्रांति सामर्थ्य / Fatigue Strength						
	(c)	केन्चिंग द्वारा ऊष्मोपचार / Heat treatability by	quenc	hing				
	(d)	बढ़े तापमान पर ऑक्सिडेशन का प्रतिरोध / Resista	ance to	o oxidation at elevated temperature				
35.	मृदु स्टील में अधिकतम कार्बन का प्रतिशत है							
	Max	Maximum carbon percentage in mild steel is						
	(a)	0.1	(b)	0.8				
	(c)	0.4	(d)	0.6				
36.	स्टील	के मशीनीयता में वृद्धि के लिए निम्नलिखित में से किस	तत्व/ उ	नोडों को छोटी मात्राओं में जोडा जाता है?				
	Small amounts of which of the following elements/pairs is added to steel to increase its machinability							
	(a)	निकेल / Nickel	(b)	सल्फर और फॉस्फोरस / Sulphur and phosphorus				
	(c)	सिलिकॉन / Silicon	(d)	मैंगनीज़ और तांबा / Manganese and copper				
37.	इलेक्ट्र	इलेक्ट्रॉन बीम वेल्डिंग के उच्च गति इलेक्ट्रॉन को, वेल्ड स्पॉट पर, ———— का उपयोग कर केन्द्रित किया जाता है।						
	High	High speed electron of Electron Beam Welding is focused on the weld spot using						
¥	(a)	निर्वात लेन्स / vacuum lens	(b)	अक्रिय गैस लेन्स / Inert gas lens				
	(c)-	प्रकाशिक लेन्स / optical lens	(d)	चुम्बकीय लेन्स / magnetic lens				

- 38. साँचो की ढ़लाई में चिल का उपयोग होता है Chills are used in casting moulds to दिशात्मक ठोसीकरण प्राप्त करने में / Achieve directional solidification ब्लो होल की संभावना कम करने में / Reduce possibility of blow holes (b) (c) (d)

 - जमने के समय को घटाने में / Reduce freezing time
 - साँचे की सतह की चिकनाहट को बढ़ाने में / Increase smoothness of casting surface
- फोर्जिंग प्रचालन में, फुल्लेरिंग किया जाता है। 39. In forging operation, fullering is done to
 - पदार्थ को अपसेट करने के लिए / upset the material
 - पदार्थ का बंकन करने के लिए / bend the material (b)
 - पदार्थ को बाहर खींचने के लिए / draw out the material (c)
 - पदार्थ के बहिवेधन के लिए / extrude the material (d)
- 40. एक सायकल जिसमें दो समतापी और दो ऐसेन्ट्रोपिक प्रक्रियाएँ हैं तो उसे कहते हैं A cycle consisting of two isothermal and two isentropic process is known as
 - स्टर्लिंग सायकल / Stirling cycle (a)
- कॉर्नेट सायकल / Carnot cycle (b)
- एरिक्सन सायकल / Ericsson cycle
- ज्यूल सायकल / Joule cycle (d)
- निम्नलिखित में से कौन-सा, एक प्रणाली का तीव्र गुण है? Which of the following is an intensive property of a system?
 - दाब / Pressure

(b) द्रव्यमान / Mass

पूर्ण ऊष्मा / Enthalpy (c)

- (d) आयतन / Volume
- समान अधिकतम दाब और तापमान के लिए

For the same maximum pressure and temperature

- डीज़ल सायकल से अधिक सक्षम ओट्टो सायकल है / Otto cycle is more efficient than diesel cycle
- ओट्टो और डीज़ल सायकल से अधिक सक्षम डुएल सायकल है / Dual cycle is more efficient than otto and diesel cycle
- ओट्टो सायकल से अधिक सक्षम डीज़ल सायकल है / Diesel cycle is more efficient than otto cycle
- ओट्टो सायकल और डीज़ल सायकल से कम सक्षम डुएल सायकल है / Dual cycle is less efficient than otto and diesel cycle

5.3

–10°C पर के एक बर्फ के खण्ड को धीरे ऊष्मित किया जात है और 100°C पर भाप में परिवर्तित किया जाता है। निम्नलिखित में से कौन सा वक्र इस तथ्य की गुणात्मकता को प्रदर्शित करता है?

A block of ice at -10°C is slowly heated and converted to steam at 100°C. Which of the following curves represent the phenomena qualitatively?

44. पैडल व्हील कार्य और निर्वात में गैस का फैलाव (मुक्त फैलाव) है

Paddle wheel work and expansion of gas into vacuum (free expansion) is a

- अर्ध सन्तुलन प्रक्रिया / Quasi equilibrium process (a)
- अर्ध स्थिर प्रक्रिया / Quasi static process (b)
- समानुवर्ती प्रक्रिया / Isotropic process (c)
- गैरसंन्तुलन प्रक्रिया / Non-equilibrium process (d)
- 45. जेट इन्जिनों में, बड़ी शक्ति के दक्ष उत्पादन हेतु, ईंधन को ———— वातावरण में जलाया जाता है। In jet engines, for efficient production of large power, fuel is burnt in an atmosphere of
 - निर्वात / Vacuum (a)

- वायुमण्डलीय वायु / Atmospheric air (b)
- सम्पीडित वायु / Compressed air
- मात्र ऑक्सीजन / Oxygen alone (d)

एक टर्बाइन की विशिष्ट गति है 46.

The specific speed of a turbine is given by

(a)
$$\frac{N\sqrt{P}}{H^{\frac{3}{4}}}$$

(b)
$$\frac{N\sqrt{Q}}{H^{\frac{3}{4}}}$$

(c)
$$\frac{N\sqrt{Q}}{H^{\frac{5}{4}}}$$

(d)
$$\frac{N\sqrt{P}}{H^{\frac{5}{4}}}$$

घर्षण घटक (4f) =0.02 के एक 200 mm व्यास क्षैतिज पाइप में से तेल प्रवाहित होता है। पाइप की लम्बाई 50 m है और						
आयतिनक बहाव दर $0.314~\mathrm{m}^3/\mathrm{s}$ है। घर्षण के कारण पाइप में हेड क्षति (g =10 m/s 2) है ———————————————————————————————————						
Oil flows through a 200 mm diameter horizontal pipe with friction factor (4f) =0.02. The length of						
the pipe is 50 m and volumetric flow rate is 0.314 m ³ /s. The head loss in the pipe due to friction is						
$(g = 10 \text{ m/s}^2)$						
(a) 50 m (b) 25 m						
(c) 100 m (d) 5 m						
यदि 50 mm व्यास छिद्र से एक तरल जेट निकलता है, जिसमें उसके वीना कन्ट्राक्टा पर 40 mm व्यास है तो उसके संकुचन का						
गुणांक होगा						
If a fluid jet discharging from a 50 mm diameter orifice has a 40 mm diameter at its vena contracta						
then its coefficient of contraction will be						
(a) 0.80 (b) 0.90						
(c) 1.25 (d) 0.64						
एक 500 mm व्यास की चिकनी पाइप पानी वहन करती है। सेक्शन 'A' पर पाइप में दबाव 100 kPa है (उत्थान : 10 m) सेक्शन						
'B' पर दबाव 75 kPa है (उत्थान : 12 m) और वेग 4 m/s है। निम्नलिखित में से कौन-सा सही है? (g = 10m/s²)						
A smooth pipe of diameter 500 mm carries water. The pressure in the pipe at Section 'A						
(elevation: 10 m) is 100 kPa. At section 'B' (elevation: 12 m) the pressure is 75 kPa and velocity is						
4 m/s. Which of the following is true $(g = 10 \text{m/s}^2)$						
(a) A से B तक प्रवाह और हेड क्षति 1 m है / Flow from A to B and head loss is 1 m						
(b) A से B तक प्रवाह और हेड क्षति 0.5 m है / Flow from A to B and head loss is 0.5 m						
(c) B से A तक प्रवाह और हेड क्षति 0.5 m है / Flow from B to A and head loss is 0.5 m						
(d). B से A तक प्रवाह और हेड क्षति 0.75 m है / Flow from B to A and head loss is 0.75 m						

50. एक टंकी में गैस के दाब के मापन के लिए एक मैनोमीटर का उपयोग किया जाता है। उपयोग किये गए तरल का विशिष्ट घनत्व 0.85 है और मैनोममीटर कॉलम ऊँचाई 55 cm है जैसा (चित्र में दिखाया गया है) यदि स्थानीय वायुमण्डलीय दाब 96 kPa है, तो टंकी में निरपेक्ष दाब क्या है?

A manometer is used to measure the pressure of a gas in a tank. The fluid used has a specific gravity of 0.85, and the manometer column height is 55 cm, as shown in figure. If the local atmospheric pressure is 96 kPa, what is the absolute pressure in the tank?

- (a) 4.6 kPa
- (c) 100.6 kPa

- (b) 98.6 kPa
- (d) 200.6 kPa
- 51. एक निर्धारित लम्बाई वाले पाइप जिसका प्रवाह दर Q है, उसके हेड की क्षति, H पाया जाता है। यदि एक दुगनी व्यास के पाइप है जिसकी समान लम्बाई है किंतु उसे 2Q प्रवाह दर वहन करना पड़ता है तो हेड क्षति होगी

The loss of head in a pipe of certain length carrying a flow rate Q is found to be H. If a pipe of twice the diameter but the same length is to carry a flow rate of 2Q the head loss will be

(a) $\frac{H}{8}$

(b) $\frac{H}{4}$

(c) $\frac{H}{2}$

(d) H

52. एक 200 rpm पर चलती अपकेन्द्री पंप है और उसकी अधिकतम क्षमता पर, 60 l/min के प्रवाह दर पर 30 m हेड देता है। यदि पम्प की गति को 400 rpm से बढ़ा दिया जाए, तो, मीटर में हेड, H और बहाव दर l/min में Q पर अधिकतम क्षमता होगी

A centrifugal pump running at 200 rpm and at its maximum efficiency is delivering a head of 30 m at a flow rate of 60 l/min. If the speed of the pump is increased to 400 rpm, then head H in meters and flow rate Q in l/min at maximum efficiency is

(a) H = 60, Q = 120

(b) H=120, Q=120

(c) H = 120, Q = 240

- (d) H=60, Q=240
- 53. पिटॉट ट्यूब का उपयोग को मापने में होता है।

Pitot tube is used for the measurement of

(a) वेग / velocity

(b) বাৰ / pressure

(c) प्रवाह / flow

(d) श्यानता / viscocity

54	. র্গা	प्रतिक्रिया प्रकार के टरबाइन में ड्राफ्ट ट्यूब का उपयोग ———— में मदद करता है।						
	Tl	The use of draft tube in a reaction type turbine helps to						
	(a							
	(b							
	(c)) बहाव दर को बढ़ाने के लिए / increase flow rate						
	(d							
55.	, अप	अपकेन्द्रीय पम्पों को समानान्तर पर जब व्यवस्थित किया जाता है						
		Centrifugal pumps when arranged in parallel						
		(a) केवल बहाव को बढ़ाता है / Increase the discharge only						
	(b)							
	(c)	केवल हेड को बढ़ाता है / Increase the head only						
	(d)	■ 149						
56.	211							
30.	en (c	कारनट इन्जिन् की ऊष्मीय क्षमता 0.5 है।यदि इन्जिन को प्रशीतित्र (फ्रिज) की तरह उपयोग किया जाए तो प्रशीतित्र (फ्रिज) का COP क्या है?						
	The of r	e thermal efficiency of Carnot engine is 0.5. If the engine is operated as refrigerator what is COP refrigerator?						
	(a) (c)	0.5 2 (b) 0.75 2 (d) 1						
57.	एक र	संख्यात्मक नियंत्रण मशीन प्रोग्राम में जानकारी के एक (ब्लॉक) खण्ड का अर्थ है						
	A 'l	plock' of information in a Numerical Control machine program means						
	(a)	टेप पर एक कतार / one row on tape						
	(b)							
	(c)	एक पूर्ण अनुदेश / one complete instruction						
	(d)	एक जॉब के लिए पूर्ण प्रोग्राम / one complete program for a job						
8.	एक उ	नच्छे प्रशीतक में होना चाहिए						
		A good refrigerant should have						
	(a)							
	(b)	वाष्पीकरण की उच्च गुप्त ऊष्पा और निम्न हिमांक / High latent heat of vaporisation and low freezing point						
	(c)	उच्च प्रचालन दाब और निम्न हिमांक / High operating pressure and low freezing point						
	(-)	उच्च विशिष्ट आयतन और वाष्पीकरण की उच्च गुप्त ऊष्मा / High specific volume and high latent heat of vaporisation						

निम्न निष्पादन गुणांक और निम्न हिमांक / Low coefficient of performance and low freezing point

59.	एक औद्योगिक ऊष्मा पम्प में, ऊष्मा का जोड़न और अस्वीकार दर क्रमश: $750 \mathrm{kW}$ और $1000 \mathrm{kW}$ है। यदि ऊष्मा पम्प $30^{\circ}\mathrm{C}$ और $15^{\circ}\mathrm{C}$ के बीच काम करता है। ऊष्मा पम्प के लिए COP है The rate of heat addition and rejection in a industrial heat pump is $750 \mathrm{kW}$ and $1000 \mathrm{kW}$								
	resp	respectively. If the heat pump operates between 30°C and 15°C. The COP for heat pump is							
	(a)	3	(b)	4					
	(c)	6.5	(d)	7.5					
60.	-	परावृत्त कारनट सायकल पर काम करती एक प्रशीतित्र में COP 4 का होता है। यदि वह, ऊष्मा पम्प की तरह काम करे और 1 kW खपत करता है, तो ऊष्मीयता प्रभाव होगी							
		A refrigerator working on a reversed Carnot cycle has a COP of 4. If it works as a heat pump and consumes 1 kW, the heating effect will be							
	(a)	1 kW	(b)	4 kW					
	(c)	5 kW	(d)	6 kW					
61.	आगी	निया के प्रशीतित्र की तरह उपयोग करने के महत्वपूर्ण ला	भ हैं						
01.		The significant advantage of using Ammonia as a refrigerant is							
	(a)	कैरेक्टरीस्टिक आदेश / Characteristic order	(b)	उच्च गुप्त ऊष्मा / High latent heat					
	(c)	विलयता / Solubility	(d)	ज्वलनशीलता / Inflammability					
62.	विद्युत	त रसायनिक मशीनिंग ECM में पदार्थ का निकलना —		——— के कारण है।					
	-	In ECM (Electro Chemical Machining) the material removal is due to							
	(a)	आयन विस्थापन / Ion displacement	(b)	संक्षारण / Corrosion					
	(c)	अपक्षरण / Erosion	(d)	संलयन / Fusion					
63.	जुड़न	ारों का उपयोग, मुख्यत: कम करता है		Charlematica of information of a set of					
	9	The use of fixtures mainly reduces							
	(a)	(a) केवल प्रचालन काल / only operation time							
	(b)	(b) दूलिंग लागत / tooling cost							
	, ,	(c) केवल सेट्टिंग समय / only setting time							
	(d)	N.M. S.							
64.	संख्य	संख्यात्मक नियंत्रण प्रणाली के बिंदु से बिंदु प्रकार में							
		In a point to point type of Numerical Control system							
	(a) केवल टूल की स्थिति का नियंत्रण पर्याप्त है / control of only position of tool is sufficient								
	(b) केवल दूल के वेग का नियंत्रण पर्याप्त है / control of only velocity of tool is sufficient								
	(c) दूल की स्थिति और वेग का नियंत्रण आवश्यक / control of position and velocity of tool is essential								
	(d) न स्थिति और न ही वेग का नियंत्रण आवश्यक है / Neither position nor velocity need to be controlled								
	23 35								

	(d)	उत्पन्न चिप का प्रकार / type of chip produced							
66.	इन्टर	फियरेन्स फिट पाने के लिए, शाफ्ट की निम्न सीमा ———— होनी आवश्यक है।							
		In order to have an interference fit, it is essential that lower limit of the shaft should be							
	(a)	(a) छेद की ऊपरी सीमा से कम / lesser than the upper limit of the hole							
	(b)	छेद की निम्न सीमा से अधिक / greater than the lower limit of the hole							
	(c)	छेद की निम्न सीमा से कम / lesser than lower limit of the hole							
	(d)	छेद की ऊपरी सीमा से अधिक / greater than the upper limit of the hole							
67.	गैन्ट्ट	ट चार्ट का उपयोग होता है							
	Gan	Gantt chart is used for							
	(a)	इनवेन्ट्री नियंत्रण / inventory control							
	(b)	सामग्री संभालना / material handling							
	(c)	उत्पादन समय सारिणी / production schedule							
	(d)	मशीन मरम्मत समय सारिणी / machine repair schedules							
68.	उत्पा	दन योजना और नियंत्रण में रौटिंग सूचित करता है							
	Rou	ting in production planning and control refers to the							
	(a)	(a) मशीनों पर भार का संतुलन / balancing of load on machines							
	(b)								
	(c)								
	(d)								
69.		$30^{+0.06}_{+0.03}~\mathrm{mm}$ के आकार के बुश और $30^{+0.04}_{-0.02}~\mathrm{mm}$ के आकार के शाफ्ट के बीच, असेम्बली के बाद, अधिकतम इन्टरिफयरेन्स (हस्तक्षेप) mm में है							
		maximum interference in mm after assembly between a bush of size $30^{+0.06}_{+0.03}$ mm and shaft of $30^{+0.04}_{-0.02}$ mm is							
	(a)	0.07 (b) 0.05							
	(ć)	0.02 (d) 0.01							
A		17 721 TA(ME)							

65. टूल लाइफ (T) और किंद्रंग गित (V) के बीच का संबंध है $VT^n =$ स्थिरांक इस संबंध में, n का मान आधारित होता है

of n depends upon

(a)

(b) (c) कार्य सामग्री / work material

कार्य अवस्था / working conditions

टूल सामग्री / tool material

The relation between tool life (T) and cutting speed (V) is $VT^n = \text{Constant}$. In this relation, the value

70.	मैक्र	मैक्रोमीटर में रैचेट स्क्रू दिया जाता है						
		A ratchet screw in micrometer is provided to						
	(a)							
	(b)			onstant pressure on the job				
	(c)		ो के लिए / prevent wea	uring of screw threads				
	(d)							
71.	शून्य	पिच रेखा वेग पर स्पर गियर टूथ द्वा	रा सुरक्षित संचारित की जाने	वाली ऐंठन को कहते है				
	The			e spur gear tooth at zero pitch line	velocity is			
	(a)	औसत बलाघूर्ण / Average t	orque (b)	अधिकतम बलाघूर्ण / maximum torque				
	(c)			स्टालिंग बलाघूर्ण / stalling torque				
72.		एक 10 mm के एक जैसी मोटाई के वृत्तीय डिस्क जिसकी त्रिज्या 100 mm और द्रव्यमान 10 kg है, उसका उपयोग फ्लाइवील की तरह किया जाता है। यदि वह 600 rpm पर गोल घूमती है, तो उस फ्लाइवील की गतिज ऊर्जा है।						
		A circular disc of uniform thickness 10 mm, radius 100 mm and mass 10 kg is used as a flywheel. If it rotates at 600 rpm the kinetic energy of flywheel is						
	(a)	98.70 J	(b)	49.35 J				
	(c)	24.67 J	(d)	197.39 J				
73.	पिच	पिच वृत्त व्यास 'd' और टीथ की कुल संख्या 'T' के एक गियर में, गियर के वृत्तीय पिच इस प्रकार परिभाषित है						
	In a	gear with pitch circle dia ned as	meter 'd' and total n	number of teeth 'T', the circular pitch	n of gear is			
	(a)	$\frac{d}{T}$	(b)	$\frac{\pi d}{}$				
	. ,	T	(0)	I				
	(c)	$\frac{T}{d}$	(d)	$\frac{\pi T}{d}$	62			
74.	990	990 kN के अधिकतम लोड के अनुसार सिलिण्डर पर ढ़क्कन लगाने के लिए चालीस बोल्टों को चुनना है। यदि बोल्ट की सामग्री के						
	लिए	लिए डिज़ाइन स्ट्रेस 330 N/mm² है, तो प्रत्येक बोल्ट का व्यास कितना है?						
	Fort	Forty bolts are to be selected for fixing the cover plate of a cylinder subjected to a maximum load of 990 kN. If the design stress for bolt material is 330 N/mm ² , what is the diameter of each bolt?						
	(a)	9.8 mm	(b)	4.9 mm				
	(c)	23.9 mm	(d)	30.90 mm				

(c)

(b)

(d)

टेन्शन / Tension

बंकन / Bending

75. एक फ्लैंज कप्लिंग को शाफ्ट से जोड़ने वाली की संभवत: नाकाम हो सकती है

टोरशन / Torsion

शीयर / Shear

A key connecting a flange coupling to shaft is likely to fail in