653DN(ML)

B

Government of India
Department of Space
LIQUID PROPULSION SYSTEMS CENTRE
Valiamala PO, Thiruvananthapuram - 695 547

WRITTEN TEST FOR SELECTION TO THE POST OF DRAUGHTSMAN 'B' (MECHANICAL)

Maximum Marks: 300

Name of the Candidate:

Roll No.:

Instructions to the Candidates

- Candidates should read carefully the instructions in the Question booklet and OMR Answer Sheet before start answering.
- You have been called for the written test based on the data furnished by you in the online application. If you have wrongly entered in the application or you do not possess the required qualification as per our advertisement, your candidature will be rejected.
- 3. You should sign the Admit Card/Photograph only in the presence of the invigilator in the Examination Hall.
- The question paper is in the form of Question Booklet with 75 questions. A separate OMR sheet is provided for answering the Questions.
- 5. Question Booklet series code (A/B/C/D/E) printed on the right hand top corner should be written in the OMR answer sheet in the place provided.
- 6. Enter your Name and Roll Number in the Question Booklet.
- 7. All entries in the OMR answer sheet should be with blue/black ball point pen only.

- 8. The written test will be of objective type based on the qualification prescribed for the post with four answers indicated, of which only one will be unambiguously correct.
- 9. You have to select the right answer by marking the corresponding oval on the OMR answer sheet by blue/black ball point pen as per the instructions given in the OMR answer sheet.
- 10. All questions carry **four** marks each, **zero** marks for no answer and **one negative** mark for a wrong answer.
- 11. Multiple answers for a question will be regarded as a wrong answer.
- 12. Marking in OMR may be done with utmost care. No spare OMR sheet will be provided.
- 13. Computers, Calculators, mobile phones, reference books, logarithm table, electronic gadgets etc. will not be allowed inside the Examination Hall.
- 14. Space available in the Question Booklet can be used for rough work.
- 15. On completion of the test, tear the OMR answer sheet along the perforation mark at the top and hand over the original OMR answer sheet to the invigilator and retain the duplicate copy with you.
- 16. Candidates are not permitted to leave the Examination Hall during the first one and a half hour of the examination.
- 17. Candidates leaving the examination hall after 1150 hrs will be allowed to retain the Question Booklet.
- 18. After the Examination, candidates should hand over OMR Answer Sheet and Admit Card to the Invigilator.

B

DRAUGHTSMAN 'B' (MECHANICAL)

a. Iron b. Copper c. Tin d. Aluminium 2. Density of materials is calculated using the formula a. volume/mass b. mass/volume c. mass X volume d. None of the above 3. Recoil of gun is explained by a. First law of motion b. Second law of motion c. Third law of motion d. Fourth law of motion d. Fourth law of motion d. Fourth law of motion c. Straight line path d. None of the above 5. If the velocity of a body is changed from 10 m/s to 20 m/s in 5 sec the acceleration is a. 5 m/sec² b. 10 m/sec² c. 50 m/sec² d. 2 m/sec² 6. 30 km/ hour speed is equal to a. 500 b. 50 c. 8.33 d. 4.33 7. Initial velocity of an object is 5 m/s and it is moving with a constant acceleration of 10 m/s² its velocity after 5 sec. is a. 20 m/s b. 35 m/s c. 50 m/s d. 55 m/s 8. Frictional force is proportional to a. Area of contact b. Normal reaction c. Mass d. Acceleration force 9. When an object is freely falling from a height its a. Kinetic Energy is converted to Potential Energy b. Potential Energy is converted to Rinetic Energy c. Kinetic Energy is reduced to zero d. Potential energy is reduced to zero	1.	Among the follow	ing which is magnetic m	naterial	
a. volume/mass c. mass X volume d. None of the above 3. Recoil of gun is explained by a. First law of motion b. Second law of motion c. Third law of motion d. Fourth law of motion d. Fourth law of motion 4. Speed and velocity is same when the body is travelling in a. Circular path b. Curved path c. Straight line path d. None of the above 5. If the velocity of a body is changed from 10 m/s to 20 m/s in 5 sec the acceleration is a. 5 m/sec² b. 10 m/sec² c. 50 m/sec² d. 2 m/sec² 6. 30 km/ hour speed is equal to a. 500 b. 50 c. 8.33 d. 4.33 7. Initial velocity of an object is 5 m/s and it is moving with a constant acceleration of 10 m/s² its velocity after 5 sec. is a. 20 m/s b. 35 m/s c. 50 m/s d. 55 m/s 8. Frictional force is proportional to a. Area of contact b. Normal reaction c. Mass d. Acceleration force 9. When an object is freely falling from a height its a. Kinetic Energy is converted to Potential Energy b. Potential Energy is converted to Potential Energy c. Kinetic Energy is reduced to zero d. Potential energy is reduced to zero 10. Modulus of elasticity is		a. Iron	b. Copper	c. Tin	d. Aluminium
c. mass X volume d. None of the above 3. Recoil of gun is explained by a. First law of motion b. Second law of motion c. Third law of motion d. Fourth law of motion 4. Speed and velocity is same when the body is travelling in a. Circular path b. Curved path c. Straight line path d. None of the above 5. If the velocity of a body is changed from 10 m/s to 20 m/s in 5 sec the acceleration is a. 5 m/sec² b. 10 m/sec² c. 50 m/sec² d. 2 m/sec² 6. 30 km/ hour speed is equal to	2.	Density of materia	als is calculated using th	ne formula	
 3. Recoil of gun is explained by a. First law of motion b. Second law of motion c. Third law of motion d. Fourth law of motion 4. Speed and velocity is same when the body is travelling in a. Circular path b. Curved path c. Straight line path d. None of the above 5. If the velocity of a body is changed from 10 m/s to 20 m/s in 5 sec the acceleration is a. 5 m/sec² b. 10 m/sec² c. 50 m/sec² d. 2 m/sec² 6. 30 km/ hour speed is equal to m/sec a. 500 b. 50 c. 8.33 d. 4.33 7. Initial velocity of an object is 5 m/s and it is moving with a constant acceleration of 10 m/s² its velocity after 5 sec. is a. 20 m/s b. 35 m/s c. 50 m/s d. 55 m/s 8. Frictional force is proportional to a. Area of contact b. Normal reaction d. Acceleration force 9. When an object is freely falling from a height its a. Kinetic Energy is converted to Potential Energy b. Potential Energy is reduced to zero d. Potential energy is reduced to zero d. Potential energy is reduced to zero d. Potential energy is reduced to zero 10. Modulus of elasticity is 		a. volume/mass	S	b. mass/volume	
a. First law of motion b. Second law of motion c. Third law of motion d. Fourth law of motion d. Fourth law of motion 4. Speed and velocity is same when the body is travelling in a. Circular path b. Curved path c. Straight line path d. None of the above 5. If the velocity of a body is changed from 10 m/s to 20 m/s in 5 sec the acceleration is a. 5 m/sec² b. 10 m/sec² c. 50 m/sec² d. 2 m/sec² 6. 30 km/ hour speed is equal tom/sec a. 500 b. 50 c. 8.33 d. 4.33 7. Initial velocity of an object is 5 m/s and it is moving with a constant acceleration of 10 m/s² its velocity after 5 sec. is a. 20 m/s b. 35 m/s c. 50 m/s d. 55 m/s 8. Frictional force is proportional to a. Area of contact b. Normal reaction c. Mass d. Acceleration force 9. When an object is freely falling from a height its a. Kinetic Energy is converted to Potential Energy b. Potential Energy is converted to Rotential Energy c. Kinetic Energy is reduced to zero d. Potential energy is reduced to zero d. Potential energy is reduced to zero		c. mass X volum	ne	d. None of the above	
b. Second law of motion c. Third law of motion d. Fourth law of motion d. Fourth law of motion 4. Speed and velocity is same when the body is travelling in a. Circular path b. Curved path c. Straight line path d. None of the above 5. If the velocity of a body is changed from 10 m/s to 20 m/s in 5 sec the acceleration is a. 5 m/sec ² b. 10 m/sec ² c. 50 m/sec ² d. 2 m/sec ² 6. 30 km/ hour speed is equal tom/sec a. 500 b. 50 c. 8.33 d. 4.33 7. Initial velocity of an object is 5 m/s and it is moving with a constant acceleration of 10 m/s ² its velocity after 5 sec. is a. 20 m/s b. 35 m/s c. 50 m/s d. 55 m/s 8. Frictional force is proportional to a. Area of contact b. Normal reaction c. Mass d. Acceleration force 9. When an object is freely falling from a height its a. Kinetic Energy is converted to Potential Energy b. Potential Energy is converted to Kinetic Energy c. Kinetic Energy is reduced to zero d. Potential energy is reduced to zero	3.	Recoil of gun is exp	plained by		
c. Third law of motion d. Fourth law of motion d. Fourth law of motion 4. Speed and velocity is same when the body is travelling in a. Circular path b. Curved path c. Straight line path d. None of the above 5. If the velocity of a body is changed from 10 m/s to 20 m/s in 5 sec the acceleration is a. 5 m/sec² b. 10 m/sec² c. 50 m/sec² d. 2 m/sec² 6. 30 km/ hour speed is equal tom/sec a. 500 b. 50 c. 8.33 d. 4.33 7. Initial velocity of an object is 5 m/s and it is moving with a constant acceleration of 10 m/s² its velocity after 5 sec. is a. 20 m/s b. 35 m/s c. 50 m/s d. 55 m/s 8. Frictional force is proportional to a. Area of contact b. Normal reaction c. Mass d. Acceleration force 9. When an object is freely falling from a height its a. Kinetic Energy is converted to Potential Energy b. Potential Energy is converted to Kinetic Energy c. Kinetic Energy is reduced to zero d. Potential energy is reduced to zero					
d. Fourth law of motion 4. Speed and velocity is same when the body is travelling in a. Circular path b. Curved path c. Straight line path d. None of the above 5. If the velocity of a body is changed from 10 m/s to 20 m/s in 5 sec the acceleration is a. 5 m/sec² b. 10 m/sec² c. 50 m/sec² d. 2 m/sec² 6. 30 km/ hour speed is equal tom/sec a. 500 b. 50 c. 8.33 d. 4.33 7. Initial velocity of an object is 5 m/s and it is moving with a constant acceleration of 10 m/s² its velocity after 5 sec. is a. 20 m/s b. 35 m/s c. 50 m/s d. 55 m/s 8. Frictional force is proportional to a. Area of contact b. Normal reaction c. Mass d. Acceleration force 9. When an object is freely falling from a height its a. Kinetic Energy is converted to Potential Energy b. Potential Energy is converted to Kinetic Energy c. Kinetic Energy is reduced to zero d. Potential energy is reduced to zero					
 4. Speed and velocity is same when the body is travelling in a. Circular path b. Curved path c. Straight line path d. None of the above 5. If the velocity of a body is changed from 10 m/s to 20 m/s in 5 sec the acceleration is a. 5 m/sec² b. 10 m/sec² c. 50 m/sec² d. 2 m/sec² 6. 30 km/ hour speed is equal to a. 500 b. 50 c. 8.33 d. 4.33 7. Initial velocity of an object is 5 m/s and it is moving with a constant acceleration of 10 m/s² its velocity after 5 sec. is a. 20 m/s b. 35 m/s c. 50 m/s d. 55 m/s 8. Frictional force is proportional to a. Area of contact b. Normal reaction c. Mass d. Acceleration force 9. When an object is freely falling from a height its a. Kinetic Energy is converted to Potential Energy b. Potential Energy is converted to Kinetic Energy c. Kinetic Energy is reduced to zero d. Potential energy is reduced to zero 10. Modulus of elasticity is 					
 a. Circular path b. Curved path c. Straight line path d. None of the above 5. If the velocity of a body is changed from 10 m/s to 20 m/s in 5 sec the acceleration is a. 5 m/sec² b. 10 m/sec² c. 50 m/sec² d. 2 m/sec² 6. 30 km/ hour speed is equal tom/sec a. 500 b. 50 c. 8.33 d. 4.33 7. Initial velocity of an object is 5 m/s and it is moving with a constant acceleration of 10 m/s² its velocity after 5 sec. is a. 20 m/s b. 35 m/s c. 50 m/s d. 55 m/s 8. Frictional force is proportional to a. Area of contact b. Normal reaction c. Mass d. Acceleration force 9. When an object is freely falling from a height its a. Kinetic Energy is converted to Potential Energy b. Potential Energy is converted to Kinetic Energy c. Kinetic Energy is reduced to zero d. Potential energy is reduced to zero 10. Modulus of elasticity is		d. Fourth law of	motion		
b. Curved path c. Straight line path d. None of the above 5. If the velocity of a body is changed from 10 m/s to 20 m/s in 5 sec the acceleration is a. 5 m/sec ² b. 10 m/sec ² c. 50 m/sec ² d. 2 m/sec ² 6. 30 km/ hour speed is equal to m/sec a. 500 b. 50 c. 8.33 d. 4.33 7. Initial velocity of an object is 5 m/s and it is moving with a constant acceleration of 10 m/s ² its velocity after 5 sec. is a. 20 m/s b. 35 m/s c. 50 m/s d. 55 m/s 8. Frictional force is proportional to a. Area of contact b. Normal reaction c. Mass d. Acceleration force 9. When an object is freely falling from a height its a. Kinetic Energy is converted to Potential Energy b. Potential Energy is converted to Kinetic Energy c. Kinetic Energy is reduced to zero d. Potential energy is reduced to zero	4.		is same when the body	is travelling in	
c. Straight line path d. None of the above 5. If the velocity of a body is changed from 10 m/s to 20 m/s in 5 sec the acceleration is a. 5 m/sec² b. 10 m/sec² c. 50 m/sec² d. 2 m/sec² 6. 30 km/ hour speed is equal to m/sec a. 500 b. 50 c. 8.33 d. 4.33 7. Initial velocity of an object is 5 m/s and it is moving with a constant acceleration of 10 m/s² its velocity after 5 sec. is a. 20 m/s b. 35 m/s c. 50 m/s d. 55 m/s 8. Frictional force is proportional to a. Area of contact b. Normal reaction c. Mass d. Acceleration force 9. When an object is freely falling from a height its a. Kinetic Energy is converted to Potential Energy b. Potential Energy is converted to Kinetic Energy c. Kinetic Energy is reduced to zero d. Potential energy is reduced to zero					
d. None of the above 5. If the velocity of a body is changed from 10 m/s to 20 m/s in 5 sec the acceleration is a. 5 m/sec² b. 10 m/sec² c. 50 m/sec² d. 2 m/sec² 6. 30 km/ hour speed is equal to m/sec a. 500 b. 50 c. 8.33 d. 4.33 7. Initial velocity of an object is 5 m/s and it is moving with a constant acceleration of 10 m/s² its velocity after 5 sec. is a. 20 m/s b. 35 m/s c. 50 m/s d. 55 m/s 8. Frictional force is proportional to a. Area of contact b. Normal reaction c. Mass d. Acceleration force 9. When an object is freely falling from a height its a. Kinetic Energy is converted to Potential Energy b. Potential Energy is converted to Kinetic Energy c. Kinetic Energy is reduced to zero d. Potential energy is reduced to zero					
 5. If the velocity of a body is changed from 10 m/s to 20 m/s in 5 sec the acceleration is a. 5 m/sec² b. 10 m/sec² c. 50 m/sec² d. 2 m/sec² 6. 30 km/ hour speed is equal tom/sec a. 500 b. 50 c. 8.33 d. 4.33 7. Initial velocity of an object is 5 m/s and it is moving with a constant acceleration of 10 m/s² its velocity after 5 sec. is a. 20 m/s b. 35 m/s c. 50 m/s d. 55 m/s 8. Frictional force is proportional to a. Area of contact b. Normal reaction c. Mass d. Acceleration force 9. When an object is freely falling from a height its a. Kinetic Energy is converted to Potential Energy b. Potential Energy is converted to Kinetic Energy c. Kinetic Energy is reduced to zero d. Potential energy is reduced to zero 10. Modulus of elasticity is 					
a. 5 m/sec² b. 10 m/sec² c. 50 m/sec² d. 2 m/sec² 6. 30 km/ hour speed is equal to m/sec a. 500 b. 50 c. 8.33 d. 4.33 7. Initial velocity of an object is 5 m/s and it is moving with a constant acceleration of 10 m/s² its velocity after 5 sec. is a. 20 m/s b. 35 m/s c. 50 m/s d. 55 m/s 8. Frictional force is proportional to a. Area of contact b. Normal reaction c. Mass d. Acceleration force 9. When an object is freely falling from a height its a. Kinetic Energy is converted to Potential Energy b. Potential Energy is converted to Kinetic Energy c. Kinetic Energy is reduced to zero d. Potential energy is reduced to zero		d. None of the a	bove		
6. 30 km/ hour speed is equal to m/sec a. 500 b. 50 c. 8.33 d. 4.33 7. Initial velocity of an object is 5 m/s and it is moving with a constant acceleration of 10 m/s² its velocity after 5 sec. is a. 20 m/s b. 35 m/s c. 50 m/s d. 55 m/s 8. Frictional force is proportional to a. Area of contact b. Normal reaction c. Mass d. Acceleration force 9. When an object is freely falling from a height its a. Kinetic Energy is converted to Potential Energy b. Potential Energy is converted to Kinetic Energy c. Kinetic Energy is reduced to zero d. Potential energy is reduced to zero	5.	If the velocity of a		0 m/s to 20 m/s in 5 sec the	acceleration is
 a. 500 b. 50 c. 8.33 d. 4.33 7. Initial velocity of an object is 5 m/s and it is moving with a constant acceleration of 10 m/s² its velocity after 5 sec. is a. 20 m/s b. 35 m/s c. 50 m/s d. 55 m/s 8. Frictional force is proportional to a. Area of contact b. Normal reaction c. Mass d. Acceleration force 9. When an object is freely falling from a height its a. Kinetic Energy is converted to Potential Energy b. Potential Energy is converted to Kinetic Energy c. Kinetic Energy is reduced to zero d. Potential energy is reduced to zero 10. Modulus of elasticity is 		a. 5 m/sec ²	b. 10 m/sec ²	c. 50 m/sec ²	d. 2 m/sec ²
 Initial velocity of an object is 5 m/s and it is moving with a constant acceleration of 10 m/s² its velocity after 5 sec. is a. 20 m/s b. 35 m/s c. 50 m/s d. 55 m/s Frictional force is proportional to a. Area of contact b. Normal reaction c. Mass d. Acceleration force When an object is freely falling from a height its a. Kinetic Energy is converted to Potential Energy b. Potential Energy is converted to Kinetic Energy c. Kinetic Energy is reduced to zero d. Potential energy is reduced to zero Modulus of elasticity is 	6.		is equal ton	n/sec	
after 5 sec. is a. 20 m/s b. 35 m/s c. 50 m/s d. 55 m/s 8. Frictional force is proportional to a. Area of contact b. Normal reaction c. Mass d. Acceleration force 9. When an object is freely falling from a height its a. Kinetic Energy is converted to Potential Energy b. Potential Energy is converted to Kinetic Energy c. Kinetic Energy is reduced to zero d. Potential energy is reduced to zero		a. 500	b. 50	c. 8.33	d. 4.33
8. Frictional force is proportional to a. Area of contact b. Normal reaction c. Mass d. Acceleration force 9. When an object is freely falling from a height its a. Kinetic Energy is converted to Potential Energy b. Potential Energy is converted to Kinetic Energy c. Kinetic Energy is reduced to zero d. Potential energy is reduced to zero	7.	Initial velocity of ar after 5 sec. is	object is 5 m/s and it i	s moving with a constant acc	celeration of 10 m/s ² its velocity
a. Area of contact b. Normal reaction c. Mass d. Acceleration force 9. When an object is freely falling from a height its a. Kinetic Energy is converted to Potential Energy b. Potential Energy is converted to Kinetic Energy c. Kinetic Energy is reduced to zero d. Potential energy is reduced to zero		a. 20 m/s	b. 35 m/s	c. 50 m/s	d. 55 m/s
a. Area of contact b. Normal reaction c. Mass d. Acceleration force 9. When an object is freely falling from a height its a. Kinetic Energy is converted to Potential Energy b. Potential Energy is converted to Kinetic Energy c. Kinetic Energy is reduced to zero d. Potential energy is reduced to zero	8.	Frictional force is p	roportional to		
9. When an object is freely falling from a height its a. Kinetic Energy is converted to Potential Energy b. Potential Energy is converted to Kinetic Energy c. Kinetic Energy is reduced to zero d. Potential energy is reduced to zero				b. Normal reaction	
a. Kinetic Energy is converted to Potential Energy b. Potential Energy is converted to Kinetic Energy c. Kinetic Energy is reduced to zero d. Potential energy is reduced to zero		c. Mass			
b. Potential Energy is converted to Kinetic Energy c. Kinetic Energy is reduced to zero d. Potential energy is reduced to zero	9.	When an object is f	reely falling from a heig	tht its	
c. Kinetic Energy is reduced to zero d. Potential energy is reduced to zero 10. Modulus of elasticity is					
d. Potential energy is reduced to zero 10. Modulus of elasticity is				tic Energy	
10. Modulus of elasticity is					
2 Strong lateria		d. Potential ener	gy is reduced to zero		
2 Strong lateria	4.0		**		
a. Stress/strain b. Strain/stress c. Stress – strain d. Stress X strain	10.				
		a. Stress/strain	b. Strain/stress	c. Stress – strain	d. Stress X strain

Page No: 1 of 8

2016-653DN(ML)

	a. Gauge pressureb. Gauge pressure	e – atmospheric pres e + atmospheric pres essure –Gauge press	sure sure	Iculated using the formula
12. Un	it of pressure is			
. 6	a. Newton	b. Pascal	c. Kilogram	d. Gauge
13. Are	ea of A1 sheet is			
	a. 1 m ²	b. 0.5 m ²	c. 1.5 m ²	d. 2 m²
14. Wh	nich is a closed curv	re		
а	a. Parabola	b. Hyperbola	c. Ellipse	d. None of the above
15. Wh	en a cone is cut by	a plane parallel to t	he axis we get	
		b. Parabola	c. Ellipse	d. Hyperbola
a b c.	Below the front of the Above the front of the Below the side via the S	view		
17. A po	oint is 50 mm abov	e the horizontal plar	ne and 20 mm in front o	f the vertical plane then the point is
b. c.	In first quadrant In second quadra In third quadrant In fourth quadrar			
		w the projectors are		
	Parallel to each of			
	Originated from o	the plane of projecti	on	
	Originating from i			- 15.150 v
19. True	length can be mea	sured in		

a. Oblique projectionb. Isometric projectionc. Orthographic projectiond. Perspective projection

20	. The lead of a double	e start thread of pitch	מ ו	
	a. 1 p	b. 2 <i>p</i>	c. 4 p	d. 0.5 <i>p</i>
21.	Standard height of a	hexagonal nut of pit	ch diad is	
	a. 0.8 d	b. 1 d	c. 1.2 d	d. 1.5 <i>d</i>
22.	Among the followin	g which is a permane	ent fastener	
	a. Nut & bolt	b. Screw	c. Rivet	d. None of the above
23.	Standard edge distar	nce for a rivet(of dian	neter d) joint is	
	a. 0.5 d	b. 0.9 d	c. 1 <i>d</i>	d. 1.5 <i>d</i>
24.	In chain dimensioning a. Given at the endb. Given as separa	d		
	c. Given as referen			
	d. None of the abo			
	ar recite of the abo	ove		
25.	Which one is not a sta	andard scale		
	a. 1:1	b. 1:2.5	c. 1:4	d. 1:10
	Bilateral tolerance is had a. Equal to upper lib. Equal to lower lib. C. Between upper d. Above upper lim	imit mit and lower limits	on	
27. V	Which is the correct m	nethod of axis markin	g	
	a.	b. ()	c. d.	
28. E	BW means			
	a. Electron Beam W	elding		
	b. Electron Beam W			
	c. Electron Bevel W	elding		
	d. Electron Beam W			
/	Interference fit, wh a. Lower limit of sha b. Upper limit of sha	aft dia is less than lov	ver limit of hole dia	

c. Lower limit of shaft dia is more than upper limit of hole dia d. Upper limit of shaft dia is less than lower limit of hole dia

30.	PCD of 8 nos.	dia 6 equi	spaced hole	es on a flang	ge is 50 i	mm what is			o adjacent
	a. 45 deg.		b. 60 deg.		c. 90 de	eg	d.	48 deg.	
31.	True length of	a line inc	lined to HP	and parallel	to VP is	obtained in			
	a. Top view		b. Front vie		c. Side		d.	None of the a	bove
32.	The developed	d view of	a tetrahedro	on is					
	a. Tetrahed		b. Square		c. Trian	igle	d.	Rectangle	
33.	The clearance	in close r	unning fit is		tha	n/to that of	sliding	fit	
	a. More		b. Less		c. Equa	ıl	d.	Opposite	
34.	Welded joints	are							
	a. Permane	ent joint			b. Tem	porary joint			
	c. Semi pe		oint		d. Loos	se joint			
35.	The weld sym	bol given	in the right	side means		123			
	a. Square l					1			
	b. Half but								
	c. Double	Fillet wel	d		E	677			
	d. Chain w								
36.	The geometri	cal tolera	nce for cylin	ndricity is					
		n.		(0			
	a. /	\bigcirc	b.	W	C.	0	d.		
37	. H7-g6 repres	ents							
	a. Clearan	ce fit			b. Inte	rference fit			
	c. Transitio	n fit			d. Nor	ne of the abo	ove		
38	. schedule pipe	e is specif	ied by						
	a. ID and t	hickness			b. ID a	lone			
	c. OD and t	thickness			d. OD	alone		•	
39	. To connect o	r branch ¡	oipes at righ	t angle whic	h fitting	g is not used			
	a. Elbow		b. T Joint		c. Uni	on joint	d	. Bend	
				host surface	o finich				
40	. Which machi			best surrac		ching	٨	. Shaping	
	a. Lapping	3	b. Milling		c. Poli	Sillig	u	, Juaping	

	41. In AutoCAD function	n key F8 is for			
	a. SNAP mode o	n and off			
	b. Ortho mode of	on and off			
	c. Command mo	ode on and off			
	d. Grid mode on	and off			
4	42. In Auto CAD mass p	properties gives	for a regi	on	
	a. Volume	b. Mass	c. Area	d. None of the above	
4	43. @ parameter in Au	toCAD is used for spec	ifying		
	a. Incremental le	engths	b. Origin		
	c. True length		d. Opera	ting point	
4	44. The distance across	the corners of a hexa	gonal nut is		
	a. 1.5d	b. 2d	c. 2.5d	d. 3d	
4	45. The angle of a ACM	E thread is			
	a. 25 deg.	b. 29 deg.	c. 32 deg.	d. 60 deg.	
4	46. In pipe fitting MTA	stands for			
	a. Maximum Thr	ead Available			
	b. Minimum Thre	ead Available			
	c. Maximum Thi	ckness Available			
	d. Male Thread A	Adaptor			
4	17. Hatching lines are o	drawn at an angle of _	to the axis or	to the main outline of the section	าร
	a. 60°	b. 45°	c. 30°	d. 50°	
4	18. Honing process pro	duces the tolerance gr	ade (IT)		
	a. 10	b. 15	c. 0	d. 6	
4	19. Surface flatness is m	neasured by			
	a. Micrometer		b. Feeler gauge		
	c. Optical flat		d. Vernier		
5	0. If the representative	e factor is 10, the true	e length of line measuri	ing 50mm on the drawing is	
	a. 500 mm	b. 5mm	c. 50 mm	d. 500 cm	
5	1. Symbol for profile to	olerance of a surface is			
	a. • 🗇 b)		d) 🗀		

c. Lo	pper deviation z wer as well as u	ero pper deviation zero	d) None of the abo	
a. Lir b. Li c. Li	ne perpendicula ne parallel to Ve ne parallel to Ho	es true length in plane or to Horizontal plane pertical plane and inclin prizontal plane and inc oth Horizontal and Ve	lined to vertical plane	e
54. Numb	er of edges of a	hexagonal pyramid is		
a. 1		b. 12	c. 20	d . 6
EE To cut	30 mm internal	square thread with a	pitch of 2.5 mm, the	core diameter should be
	5mm	b.30.0 mm	c. 27.5 mm	d. 32.5 mm
56. In an a	assembly, shafts	of size 25 $^{+0.04}_{+0.01}$ mm m	ate with holes of size	$25_{+0.02}^{+0.03}$ mm. Maximum
interfe	erence that can	occur in the assembly	c. 0.01 mm	d. 0.04 mm
a. C).02 mm	b. 0.03 mm	C. 0.01 IIIII	
b.C	ross- sectional a	rea of the threads is 2	1 1 1 2	
d.T 58. What	he effective diant is the type of fit Clearance	neter of bolt is 24 mm meter of bolt is 24 mm t for the dimension 20	and there are 2 thre	0.021 and 20 -0.007 / - 0.0020 mm
d.T 58. What a. c. l 59. The s a.	he effective diantification is the type of fit Clearance interference mallest unit of a Degree	meter of bolt is 24 mm t for the dimension 20 an angle is b. Minute	h and there are 2 three H7/g6 ie 20+0.00 / + b. Transition d. Heavy interfer c. Second	0.021 and 20 -0.007 / - 0.0020 mm
d.T 58. What a. c. l 59. The s a.	he effective diantification is the type of fit Clearance interference mallest unit of a Degree	meter of bolt is 24 mm t for the dimension 20 an angle is b. Minute	h and there are 2 three H7/g6 ie 20+0.00 / + b. Transition d. Heavy interfer c. Second	0.021 and 20 -0.007 / - 0.0020 mm rence d. Radian
d.T 58. What a. c. l 59. The s a. 60. The r	he effective diantification is the type of fit Clearance interference mallest unit of a Degree	meter of bolt is 24 mm t for the dimension 20 an angle is b. Minute	h and there are 2 three H7/g6 ie 20+0.00 / + b. Transition d. Heavy interfer c. Second	0.021 and 20 -0.007 / - 0.0020 mm
d.T 58. What a. c. l 59. The s a. 60. The r a.0 61. One	is the type of fit Clearance nterference mallest unit of a Degree	neter of bolt is 24 mm t for the dimension 20 an angle is b. Minute b. 0.1mm	h and there are 2 three H7/g6 ie 20+0.00 / + b. Transition d. Heavy interfer c. Second	0.021 and 20 -0.007 / - 0.0020 mm rence d. Radian
d.T 58. What a. c. I 59. The s a. 60. The r a. 6 61. One a. 62. Unit	he effective diar is the type of fit Clearance nterference mallest unit of a Degree minimum measu 0.05mm micron is	neter of bolt is 24 mm t for the dimension 20 an angle is b. Minute arement from steel rul b. 0.1mmmm	h and there are 2 three H7/g6 ie 20+0.00 / + b. Transition d. Heavy interfer c. Second e is c. 0.5mm	0.021 and 20 -0.007 / - 0.0020 mm rence d. Radian d. 0.2mm
d.T 58. What a. c. I 59. The s a. 60. The r a.6 61. One a. 62. Unit a.	is the type of fit Clearance Interference In	neter of bolt is 24 mm t for the dimension 20 an angle is b. Minute arement from steel rul b. 0.1mm mm b. 0.01	h and there are 2 three H7/g6 ie 20+0.00 / + b. Transition d. Heavy interfer c. Second e is c. 0.5mm c. 0.001	0.021 and 20 -0.007 / - 0.0020 mm rence d. Radian d. 0.2mm d. 0.000001 d. kg/m³
61. One a. 62. Unit a. 63. 20%	is the type of fit Clearance Interference In	neter of bolt is 24 mm t for the dimension 20 an angle is b. Minute arement from steel rul b. 0.1mm mm b. 0.01	h and there are 2 three H7/g6 ie 20+0.00 / + b. Transition d. Heavy interfer c. Second e is c. 0.5mm c. 0.001	0.021 and 20 -0.007 / - 0.0020 mm rence d. Radian d. 0.2mm d. 0.000001

52. Basic hole has

64.	10X + 30 = 75: then va	alue of X is		
	a. 4.5	b. 5.5	c. 6.5	d. 7.5
65.	6X + 4Y = 26 and $5X + 3$	3Y = 20 then value of X a	nd Y are	
	a. 3 and 2	b. 4 and 0	c. 1 and 5	d. 5 and 5
66.	. Volume of a cylinder of	of radius <i>r</i> and height <i>h</i> is	S .	
	a. πrh	b. π r ² h	c. π r ² h ²	$d \pi hr^2$
67.	. Volume of a cube of si	ide 6 cm is		
	a. 36 cm ³	b. 216 cm ²	c. 36 cm ²	d. 216 cm ³
68.	. Distance covered by a	n athlete in two rounds	if the track is circular wit	th radius 50 m.
69.	a. 314 m A solid having 4 faces	b. 7850 m	c. 628 m	d. 400 m
	a. Cube	b. Prism	c. Tetrahedron	d. Octahedron
70.	declination of 30 deg.	Distance of the car from	n the base of the tower i	
	a. 173.2 m	b. 100 m	c. 50 m	d. 86.6 m
71.	Surface area of a sphe			
	a. 942 cm ²	b. 628 cm ²	c. 314 cm ²	d. 1256 cm ²
72.	Density of steel is in the	ne range of		
	a. 4-5 g/cc	b. 5 – 6 g/cc	c. 6– 7 g/cc	d. 7–8 g/cc
73.	Stainless steel gets its	property (stainless) due	to the presence of	
	a. Copper	b. Nickel	c. Carbon	d. Chromium
74.	Bronze is an alloy of			
	a. Copper, Tin , Zin	C	b. Copper, Lea	d , Zinc
	c. Copper, Lead , T	in	d. Copper, Tin	, Iron
75.	Which is a ferrous allo	y:		
	a. Bronze	b. Brass	c. Steel	d. None of the above

B

2016-653DN(ML)

Page No: 7 of 8

Space for rough work

B

2016-653DN(ML)

Page No:8 of 8